issue_comments: 1247149969
This data as json
html_url | issue_url | id | node_id | user | created_at | updated_at | author_association | body | reactions | issue | performed_via_github_app |
---|---|---|---|---|---|---|---|---|---|---|---|
https://github.com/simonw/sqlite-utils/issues/297#issuecomment-1247149969 | https://api.github.com/repos/simonw/sqlite-utils/issues/297 | 1247149969 | IC_kwDOCGYnMM5KVf-R | 9599 | 2022-09-14T18:28:53Z | 2022-09-14T18:29:34Z | OWNER | As an aside, https://avi.im/blag/2021/fast-sqlite-inserts/ inspired my to try pypy since that article claimed to get a 2.5x speedup using pypy compared to regular Python for a CSV import script. Setup: ``` brew install pypy3 cd /tmp pypy3 -m venv venv source venv/bin/activate pip install sqlite-utils ``` I grabbed the first 760M of that `https://static.openfoodfacts.org/data/en.openfoodfacts.org.products.csv` file (didn't wait for the whole thing to download). Then: ``` time sqlite-utils insert pypy.db t en.openfoodfacts.org.products.csv --csv [------------------------------------] 0% [###################################-] 99% 11.76s user 2.26s system 93% cpu 14.981 total ``` Compared to regular Python `sqlite-utils` doing the same thing: ``` time sqlite-utils insert py.db t en.openfoodfacts.org.products.csv --csv [------------------------------------] 0% [###################################-] 99% 11.36s user 2.06s system 93% cpu 14.341 total ``` So no perceivable performance difference. | {"total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0} | 944846776 |