issue_comments: 1302716350
This data as json
html_url | issue_url | id | node_id | user | created_at | updated_at | author_association | body | reactions | issue | performed_via_github_app |
---|---|---|---|---|---|---|---|---|---|---|---|
https://github.com/simonw/datasette/issues/1882#issuecomment-1302716350 | https://api.github.com/repos/simonw/datasette/issues/1882 | 1302716350 | IC_kwDOBm6k_c5Npd-- | 9599 | 2022-11-03T21:51:14Z | 2022-11-03T22:35:54Z | OWNER | Validating this JSON object is getting a tiny bit complex. I'm tempted to adopt https://pydantic-docs.helpmanual.io/ at this point. The `create_model` example on https://stackoverflow.com/questions/66168517/generate-dynamic-model-using-pydantic/66168682#66168682 is particularly relevant, especially when I work on this issue: - #1863 ```python from pydantic import create_model d = {"strategy": {"name": "test_strat2", "periods": 10}} Strategy = create_model("Strategy", **d["strategy"]) print(Strategy.schema_json(indent=2)) ``` `create_model()`: https://pydantic-docs.helpmanual.io/usage/models/#dynamic-model-creation | {"total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0} | 1435294468 |