issue_comments
1 row where issue = 1063982712
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
id ▼ | html_url | issue_url | node_id | user | created_at | updated_at | author_association | body | reactions | issue | performed_via_github_app |
---|---|---|---|---|---|---|---|---|---|---|---|
1279249898 | https://github.com/dogsheep/twitter-to-sqlite/issues/60#issuecomment-1279249898 | https://api.github.com/repos/dogsheep/twitter-to-sqlite/issues/60 | IC_kwDODEm0Qs5MP83q | chapmanjacobd 7908073 | 2022-10-14T16:58:26Z | 2022-10-14T16:58:26Z | NONE | You could try using `msys2`. I've had better luck running python CLIs within that system on Windows. Here is a guide: https://github.com/chapmanjacobd/lb/blob/main/Windows.md#prep | {"total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0} | Execution on Windows 1063982712 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [issue] INTEGER REFERENCES [issues]([id]) , [performed_via_github_app] TEXT); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);