issue_comments
2 rows where issue = 1077628073
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
id ▼ | html_url | issue_url | node_id | user | created_at | updated_at | author_association | body | reactions | issue | performed_via_github_app |
---|---|---|---|---|---|---|---|---|---|---|---|
991761635 | https://github.com/simonw/datasette/issues/1550#issuecomment-991761635 | https://api.github.com/repos/simonw/datasette/issues/1550 | IC_kwDOBm6k_c47HRTj | simonw 9599 | 2021-12-11T19:39:01Z | 2021-12-11T19:39:01Z | OWNER | I wonder if this could work for public instances too with some kind of queuing mechanism? I really need to use benchmarking to figure out what the right number of maximum SQLite connections is. I'm just guessing at the moment. | {"total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0} | Research option for returning all rows from arbitrary query 1077628073 | |
991805516 | https://github.com/simonw/datasette/issues/1550#issuecomment-991805516 | https://api.github.com/repos/simonw/datasette/issues/1550 | IC_kwDOBm6k_c47HcBM | simonw 9599 | 2021-12-11T23:43:24Z | 2021-12-11T23:43:24Z | OWNER | I built a tiny Starlette app to experiment with this a bit: ```python import asyncio import janus from starlette.applications import Starlette from starlette.responses import JSONResponse, HTMLResponse, StreamingResponse from starlette.routing import Route import sqlite3 from concurrent import futures executor = futures.ThreadPoolExecutor(max_workers=10) async def homepage(request): return HTMLResponse( """ <html> <head><title>SQL CSV Server</title> <style>body { width: 40rem; font-family: helvetica; margin: 2em auto; }</style> <body> <h1>SQL CSV Server</h1> <form action="/csv"> <label style="display: block">SQL query: <textarea style="width: 90%; height: 20em" name="sql"></textarea> </label> <input type="submit" value="Run query"> </form> </head> """ ) def run_query_in_thread(sql, sync_q): db = sqlite3.connect("../datasette/covid.db") cursor = db.cursor() cursor.arraysize = 100 # Default is 1 apparently? cursor.execute(sql) columns = [d[0] for d in cursor.description] sync_q.put([columns]) # Now start putting batches of rows while True: rows = cursor.fetchmany() if rows: sync_q.put(rows) else: break # Let queue know we are finished\ sync_q.put(None) async def csv_query(request): sql = request.query_params["sql"] queue = janus.Queue() loop = asyncio.get_running_loop() async def csv_generator(): loop.run_in_executor(None, run_query_in_thread, sql, queue.sync_q) while True: rows = await queue.async_q.get() if rows is not None: for row in rows: yield ",".join(map(str, row)) + "\n " queue.async_q.task_done() else: # Cleanup queue.close() await queue.wait_closed() … | {"total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0} | Research option for returning all rows from arbitrary query 1077628073 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [issue] INTEGER REFERENCES [issues]([id]) , [performed_via_github_app] TEXT); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);