issue_comments
1 row where issue = 559964149
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
id ▼ | html_url | issue_url | node_id | user | created_at | updated_at | author_association | body | reactions | issue | performed_via_github_app |
---|---|---|---|---|---|---|---|---|---|---|---|
582103280 | https://github.com/simonw/datasette/issues/665#issuecomment-582103280 | https://api.github.com/repos/simonw/datasette/issues/665 | MDEyOklzc3VlQ29tbWVudDU4MjEwMzI4MA== | simonw 9599 | 2020-02-04T20:36:48Z | 2020-02-04T20:36:48Z | OWNER | pyparsing has an example based on SQLite SELECT statements: https://github.com/pyparsing/pyparsing/blob/8d9ab59a2b2767ad56c9b852c325075113718c0a/examples/select_parser.py https://github.com/lark-parser/lark is a relatively new (less than two years old) parsing library that looks promising too. | {"total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0} | Introduce a SQL statement parser in Python 559964149 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [issue] INTEGER REFERENCES [issues]([id]) , [performed_via_github_app] TEXT); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);