issue_comments
1 row where user = 545193
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
id ▼ | html_url | issue_url | node_id | user | created_at | updated_at | author_association | body | reactions | issue | performed_via_github_app |
---|---|---|---|---|---|---|---|---|---|---|---|
1465208436 | https://github.com/simonw/datasette/issues/236#issuecomment-1465208436 | https://api.github.com/repos/simonw/datasette/issues/236 | IC_kwDOBm6k_c5XVU50 | sopel 545193 | 2023-03-12T14:04:15Z | 2023-03-12T14:04:15Z | NONE | I keep coming back to this in search for the related exploration, so I'll just link it now: @simonw has meanwhile researched _how to deploy Datasette to AWS Lambda using function URLs and Mangum_ via https://github.com/simonw/public-notes/issues/6 and concluded _that's everything I need to know in order to build a datasette-publish-lambda plugin_. | {"total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0} | datasette publish lambda plugin 317001500 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [issue] INTEGER REFERENCES [issues]([id]) , [performed_via_github_app] TEXT); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);