issue_comments
1 row where user = 60892516
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
id ▼ | html_url | issue_url | node_id | user | created_at | updated_at | author_association | body | reactions | issue | performed_via_github_app |
---|---|---|---|---|---|---|---|---|---|---|---|
1170595021 | https://github.com/simonw/sqlite-utils/issues/26#issuecomment-1170595021 | https://api.github.com/repos/simonw/sqlite-utils/issues/26 | IC_kwDOCGYnMM5FxdzN | izzues 60892516 | 2022-06-29T23:35:29Z | 2022-06-29T23:35:29Z | NONE | Have you seen [MakeTypes](https://github.com/jvilk/MakeTypes)? Not the exact same thing but it may be relevant. And it's inspired by the paper ["Types from Data: Making Structured Data First-Class Citizens in F#"](https://dl.acm.org/citation.cfm?id=2908115). | {"total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0} | Mechanism for turning nested JSON into foreign keys / many-to-many 455486286 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [issue] INTEGER REFERENCES [issues]([id]) , [performed_via_github_app] TEXT); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);